Some identities of degenerate Euler polynomials associated with degenerate Bernstein polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some identities of degenerate Fubini polynomials arising from differential equations

Recently, Kim et al. have studied degenerate Fubini polynomials in [T. Kim, D. V. Dolgy, D. S. Kim, J. J. Seo, J. Nonlinear Sci. Appl., 9 (2016), 2857–2864]. Jang and Kim presented some identities of Fubini polynomials arising from differential equations in [G.-W. Jang, T. Kim, Adv. Studies Contem. Math., 28 (2018), to appear]. In this paper, we drive differential equations from the generating ...

متن کامل

Some Identities on the q-Tangent Polynomials and Bernstein Polynomials

In this paper, we investigate some properties for the q-tangent numbers and polynomials. By using these properties, we give some interesting identities on the q-tangent polynomials and Bernstein polynomials. Throughout this paper, let p be a fixed odd prime number. The symbol, Zp, Qp and Cp denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of algebraic ...

متن کامل

Some Identities on the Twisted (h, q)-Genocchi Numbers and Polynomials Associated with q-Bernstein Polynomials

Let p be a fixed odd prime number. Throughout this paper, we always make use of the following notations: Z denotes the ring of rational integers, Zp denotes the ring of padic rational integer, Qp denotes the ring of p-adic rational numbers, and Cp denotes the completion of algebraic closure of Qp, respectively. Let N be the set of natural numbers and Z N {0}. Let Cpn {ζ | ζpn 1} be the cyclic g...

متن کامل

Some Identities of the Frobenius-Euler Polynomials

and Applied Analysis 3 If n ∈ Nwith n ≡ 0 mod 2 , then we have I−1 fn − I−1 f 2 n−1 ∑ l 0 −1 l−1f l . 2.6 From 1.4 and 2.3 , we derive ∫ Zp eqdμ−1 x 2 2 q 1 − −q −1 et − −q −1 2 2 q ∞ ∑ n 0 Hn −q−1 t n n! . 2.7 Thus, we note that ∫ Zp xqdμ−1 x 2 2 q Hn −q−1 , ∫ Zp y x qdμ−1 x 2 2 q Hn −q−1, x . 2.8 Let n ∈ N with n ≡ 1 mod 2 . Then we obtain 2 q n−1 ∑ l 0 −1 ql qHm −q−1, n Hm −q−1 . 2.9 For n ∈...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2019

ISSN: 1029-242X

DOI: 10.1186/s13660-019-2110-y